Yox1 links MBF-dependent transcription to completion of DNA synthesis.
نویسندگان
چکیده
When DNA replication is challenged cells activate a DNA synthesis checkpoint, blocking cell cycle progression until they are able to overcome the replication defects. In fission yeast, Cds1 is the effector kinase of this checkpoint, inhibiting M-phase entry, stabilizing stalled replication forks and triggering transcriptional activation of S-phase genes. The molecular basis of this last effect is largely unknown. The Mlu1 binding factor (MBF) complex controls the transcription of S-phase genes. We purified novel interactors of the MBF complex and identified the repressor Yox1. When the DNA synthesis checkpoint is activated, Yox1 is phosphorylated, which abrogates its binding to MBF. MBF-dependent transcription therefore remains active until cells are able to overcome this challenge.
منابع مشابه
The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor
In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)-dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show...
متن کاملThe Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback
The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MB...
متن کاملBck2 Acts through the MADS Box Protein Mcm1 to Activate Cell-Cycle-Regulated Genes in Budding Yeast
The Bck2 protein is a potent genetic regulator of cell-cycle-dependent gene expression in budding yeast. To date, most experiments have focused on assessing a potential role for Bck2 in activation of the G1/S-specific transcription factors SBF (Swi4, Swi6) and MBF (Mbp1, Swi6), yet the mechanism of gene activation by Bck2 has remained obscure. We performed a yeast two-hybrid screen using a trun...
متن کاملThe MluI Cell Cycle Box (MCB) Motifs, but Not Damage-Responsive Elements (DREs), Are Responsible for the Transcriptional Induction of the rhp51+ Gene in Response to DNA Replication Stress
DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase repor...
متن کاملComplex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae.
In the yeast Saccharomyces cerevisiae, SBF (Swi4-Swi6 cell cycle box binding factor) and MBF (MluI binding factor) are the major transcription factors regulating the START of the cell cycle, a time just before DNA replication, bud growth initiation, and spindle pole body (SPB) duplication. These two factors bind to the promoters of 235 genes, but bind less than a quarter of the promoters upstre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2011